
Bridging Semantics for Automated Web Form Testing
Parsa Alian

The University of British Columbia
Vancouver, Canada
palian@ece.ubc.ca

Noor Nashid
The University of British Columbia

Vancouver, Canada
nashid@ece.ubc.ca

Mobina Shahbandeh
The University of British Columbia

Vancouver, Canada
mobinashb@ece.ubc.ca

Ali Mesbah
The University of British Columbia

Vancouver, Canada
amesbah@ece.ubc.ca

ABSTRACT

Automated test generation for web forms has been a longstanding
challenge, exacerbated by the intrinsic human-centric design of
forms and their complex, device-agnostic structures. We introduce
an innovative approach, called FormNexus, for automated web
form test generation, which emphasizes deriving semantic insights
from individual form elements and relations among them, utilizing
textual content, DOM tree structures, and visual proximity. The
insights gathered are transformed into a new conceptual graph, the
Form Entity Relation Graph (FERG), which offers machine-friendly
semantic information extraction. Leveraging LLMs, FormNexus
adopts a feedback-driven mechanism for generating and refining
input constraints based on real-time form submission responses.
The culmination of this approach is a robust set of test cases, each
produced by methodically invalidating constraints, ensuring com-
prehensive testing scenarios for web forms. This work bridges the
existing gap in automated web form testing by intertwining the
capabilities of LLMs with advanced semantic inference methods.
Our evaluation demonstrates that FormNexus combined with GPT-
4 achieves 89% coverage in form submission states. This outcome
significantly outstrips the performance of the best baseline model
by a margin of 25%.

1 INTRODUCTION

In the contemporary digital era, web applications play a crucial
role in our daily interactions. These modern applications have
become increasingly sophisticated, allowing users to engage in
intricate ways. A vital part of the interaction happens through
forms. They serve as essential tools for collecting dynamic user
data and establishing effective communication between users and
software applications. Given their significant role, it is imperative
to rigorously test the functionality of these web forms to ensure
accuracy and reliability.

While there have been advancements in web testing method-
ologies [9, 12, 14, 49], the realm of form test generation remains
sparsely explored [39]. Generating input values and test cases for
forms introduces a distinct set of challenges. Since forms are tai-
lored for human interaction, generating suitable values necessitates
a grasp of the context of each input field: understanding the seman-
tics of fields, as well as how they relate to one another. In the context

, ,
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of the black box test generation for web forms in particular [18],
understanding the Document Object Model (DOM) introduces an-
other layer of intricacy, which can at times overshadow the form’s
inherent semantics. The flexibility in coding that allows for visually
identical displays adds a layer of complexity to the web form’s
architecture. Furthermore, a push for web applications to be device-
agnostic impacts the design of HTML structures, making it even
more elusive. These complexities can pose significant hurdles for
the automated testing of web forms.

Given the imperative to comprehend form semantics for auto-
mated test generation, leveraging Natural Language Processing
(NLP) techniques for form input generation emerges as a promising
avenue. The spectrum of potential methodologies has broadened
notably with the recent introduction of Large Language Models
(LLMs) such as GPT-4 [37] and Llama-2 [45]. The adeptness of
LLMs in emulating human-like language processing and genera-
tion paves the way for a new approach to this endeavor. Recently,
studies have leveraged LLMs for a wide array of tasks, such as
unit test generation [25, 28, 34, 40, 41, 48] and mobile app form-
filling [32]. The advent of these techniques presents an exciting
frontier in addressing the complexities of automated web form test
generation.

In this paper, we introduce FormNexus, a novel LLM-agnostic
technique designed explicitly for the automated generation of web
form tests. At its core, this method grapples with the intricacies
inherent in understanding the context of input fields. We do this
by transforming the form’s DOM layout into a more organized
structure, called Form Entity Relation Graph (FERG), where the
semantics and relationships of form elements become more clear
and better suited for machine interpretation. To make this transfor-
mation possible, we analyze each node’s characteristics, including
its textual content and position in the DOM hierarchy. Based on
these factors, we determine similarities between various HTML
nodes and identify potential relationships between different nodes,
which in turn provides insights into the semantics of individual
inputs and the connections that might exist between them.

After establishing the semantic linkages within the form, we
adopt a feedback-driven methodology that leverages these connec-
tions in conjunction with LLMs to formulate test cases for the form.
The procedure begins by deducing preliminary constraints rooted
in semantic associations, followed by generating input values in
accordance with these constraints. FormNexus then verifies, and
if needed modifies, the inferred constraints, generates new input
values, and submits the form under these modified constraints. Our

ar
X

iv
:2

40
2.

00
95

0v
1

 [
cs

.S
E

]
 1

 F
eb

 2
02

4

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, , Parsa Alian, Noor Nashid, Mobina Shahbandeh, and Ali Mesbah

goal is to corroborate the constraints using the feedback obtained
after submission. Once the constraints are validated, FormNexus
converts them into a comprehensive set of test cases. These cases
serve as a valuable vehicle for checking and deciphering the form’s
runtime functionality.

To evaluate FormNexus, we employ a diverse selection of real-
world and open-source applications. We utilize Llama 2 and GPT-4
as the LLM underpinning FormNexus. Our results show that Form-
Nexus instantiated with GPT-4 delivers the best results, achieving a
state coverage of 89%marking a significant 25% improvement over
the next best performer baseline, GPT-4 alone. Additionally, suc-
cessful form submission test cases are equivalent to the form-filling
task, where FormNexus with GPT-4 demonstrates 83% success rate
in successfully submitting and passing the forms, outperforming
all other baselines by at least 27%. Our evaluation also scrutinizes
the individual modules of FormNexus, revealing the contributions
of the different components, the inference of semantic relations via
FERG, and our feedback loop approach toward the overall effective-
ness of our technique.

This work makes the following contributions:

• A novel technique for discerning the semantics and intricate
interrelationships of web form components.

• An approach for inferring input field constraints and values
using a combination of semantics captured in a Form Entity
Relation Graph (FERG) and an LLM.

• Amethod for generating a test suite covering both successful
and failing form submission states.

• A new dataset containing a collection of web forms, each
annotated with input values and accompanying submission
states, enabling a comprehensive evaluation of the coverage
of form tests.

2 MOTIVATING EXAMPLE

In our study, we use the Air Canada’s [1] flight reservation web
form as a motivating example, illustrated in Figure 1.

Figure 1: Aircanada’s flight reservation form

Prior to the deployment of such forms, developers must conduct
comprehensive testing to ensure the form’s appropriate responsive-
ness to both valid and invalid inputs. The effectiveness of the test
cases can be evaluated by examining the extent of coverage of Form
Submission States.

Definition 1 (Form Submission State (FSS)). A Form Submission
State is an ordered tuple 𝑆 = (𝐼 ,𝐶), wherein 𝐼 represents the set
of inputs subjected to testing during the form submission, and 𝐶
constitutes the list of modifications to the source of the page post
form submission. In other words, each submission state maps to an
execution path for the function that operates behind the web form.

While the interface of this form appears straightforward, it en-
compasses a variety of scenarios that could potentially lead to errors,
each necessitating thorough testing. First of all, each input field in a
form is designed to accept values of a specific type and pattern. For
example, date fields, such as Departure and Arrival, cannot
accept random strings; they require inputs that adhere to a prede-
fined date format. Similarly, other input fields may be restricted to
specific formats, such as email addresses, telephone numbers, or
other custom patterns. Beyond these standard validations, forms
may also involve more intricate scenarios that warrant further
examination. Consider the following examples from Figure 1:

• Geographic constraints play a crucial role in the travel planning
mechanism. Specifically, the points of departure and arrival (From
and To) must differ, as it is logically inconsistent to embark on a
journey that begins and ends at the same location. For example,
while a trip from Toronto to New York is feasible, a journey
from Toronto to Toronto is not.

• The order of temporal events is equally vital. Travel dates must be
arranged in chronological order, with the Return date necessar-
ily occurring after the Departure date. The system should also
be capable of detecting and signaling any discrepancies, such
as dates set in the past or unreasonably far in the future. For
instance, a journey commencing on Dec 25th and concluding
on Dec 31st is valid, but not vice versa.

Forms similar to the flight reservation interface illustrated in
Figure 1 are ubiquitously encountered and effortlessly navigated
by human operators, who inherently understand the logical restric-
tions these forms entail. In contrast, computational systems en-
counter significant obstacles in generating valid and invalid inputs
for such forms. An initial challenge lies in the precise identification
of the intended functions of input fields within web forms. This
challenge becomes evident when examining the simplified HTML
structure of the From field, as detailed in Listing 1.

1 <div>
2 <div>
3 ...
4 <div>
5 <input type="text"

id="bkmgFlights_origin_trip_1"
aria-label="From" />

6 </div>
7 <abc-form-element-label>
8 <label for="bkmgFlights_origin_trip_1">
9 From
10 </label>
11 </abc-form-element-label>
12 ...
13 </div>
14 ...

Bridging Semantics for Automated Web Form Testing , ,

0.67 -0.23 ... 0.12 0.68

...

Textual Embeddings

0.53 -0.23 ... -0.17 0.59

...

Structural Embeddings

Concatenate

Web Form

Non-container
Embeddings

Feedback

From's label

From's input

To's input

To's label

DOM Tree

form

div div

From's input

From's label

To's input

To label

...

Feedback

ADA

Node2Vec

Figure 2: FERG embedding stage

15 <div>
16 Please select a valid point of origin for this

trip.
17 </div>
18 ...
19 </div>

Listing 1: Air Canada’s From Input Field

If key attributes such as id, for, and aria-label are absent
from these elements, discerning the purpose of an <input> element
in such HTML code becomes virtually impossible, a scenario not
uncommon in many web applications. Identifying labels for input
fields can be problematic, especially when they are not directly
associated through the labels’ for attributes. Furthermore, linking
other textual elements, such as feedback or hint texts, to inputs is
often more complex due to the lack of explicit connections.

Understanding the relationships between input elements and
their associated textual features is a complex task that extends be-
yond straightforward hierarchical heuristics. The inherent flexibil-
ity in HTML coding practices, which allows for numerous structural
variants to achieve similar visual outcomes, significantly limits the
effectiveness of these heuristics. Developers often insert <div> or
 elements to implement specific styles or functionalities,
adding a layer of structural complexity that is visually subtle but
significant for computational interpretation.

Another method to discern relationships between form elements
is by examining their textual features. However, there are instances
where elements may share a semantic relationship but lack direct
associations. For example, the terms From and Departure in
a form can be considered semantically related, yet they do not
have explicit constraints linking them during the form completion
process.

After identifying the textual context of an element, computa-
tional systems face the significant challenge of interpreting the
semantics of labels and other contextual texts to accurately gen-
erate values for input fields. This task necessitates a sophisticated
level of NLP capability. Furthermore, the specific context of the
application in question is critical, as identical textual cues can carry
different meanings in various applications. For instance, in a travel-
related form, the term From might signify the point of departure
or the departure date. In contrast, in a personal information form,
From could pertain to the user’s nationality.

The final challenge encountered by computational systems in-
volves comprehending the interrelationships among various input
fields. Such interconnections often lead to specific constraints, ex-
emplified by the geographical dependencies within location fields

or the chronological ordering required in date fields in Figure 1. To
encapsulate the entirety of information necessary for generating
values for an input field, we define the concept of Input Field Context
as follows:

Definition 2 (Input Field Context). The term Input Field Context
refers to any pertinent information that assists in clarifying the
requirements and limitations of a given input. This context may
manifest as textual annotations associated with the input field such
as labels or hint texts, or it might be derived from other input fields
that influence and define the constraints of the focal input.

The concept of Input Field Context encompasses a comprehensive
set of requirements pertaining to individual input fields within a
form. These requirements may include the specification of data
types that are deemed acceptable for each field, as well as the
delineation of relationships between various fields. Such a frame-
work allows for the categorization of different scenarios as either
conforming to or deviating from these established requirements,
thereby providing a structured basis for rigorous testing.

3 APPROACH

In this work, we introduce FormNexus, a novel approach for web
form test generation. The main focus of our method is to under-
stand the context of each form element. Then, by harnessing the
capabilities of LLMs and employing a feedback-driven approach,
we decipher the constraints tied to input fields, which aids in value
generation. These identified constraints then form the foundation
upon which we craft test cases for the web form.

3.1 Input Context Construction

To tackle the complexities associated with comprehending the con-
text of input fields, as discussed in section 2, we introduce a novel
approach that converts the form’s DOM tree into a graph structure,
termed the Form Entity Relation Graph (FERG). The goal of this
graph is two-fold: first, it enhances the contextual information of
each individual input field, second, it captures information pertain-
ing to how relevant form entities are to each other and provides a
quantitative score of the relevance.

As discussed in section 2, relying solely on either textual or struc-
tural attributes of a form’s elements may not adequately reveal the
interrelationships among them. We hypothesize that a combination
of these attributes should reveal a clearer sense of connectivity be-
tween elements, in contrast with relying on them solely. To achieve
this, we employ embedding techniques to combine the individual

, , Parsa Alian, Noor Nashid, Mobina Shahbandeh, and Ali Mesbah

features of the elements, thus overcoming their separate limitations.
Subsequently, these combined embeddings are utilized to elucidate
potential relationships among the elements. This is achieved by
constructing a graph, FERG, which represents the interconnected
structure of the elements.

3.1.1 Creating Embedding Space. In the construction of the
FERG, the initial step involves establishing an embedding space
for the elements within the form, as delineated in Figure 2. To
encapsulate the connections in the form, we start by generating
textual and structural embeddings for non-container elements. In
the realm of web forms, non-container elements are defined as
those either directly encompassing textual content or functioning
as input elements, and these are the elements that users directly
interact with. For the generation of text embeddings, which involve
the transformation of sentences into embedding vectors, we utilize
ADA [35] embeddings. To elucidate the structural relationships
among elements, we apply the node2vec methodology [19] on the
DOM tree. This approach results in a distinct embedding vector for
each node within the DOM tree.

We iterate over the non-container nodes from the DOM tree and
calculate the textual and structural embeddings for these nodes. We
concatenate the embeddings to form an embedding space, in which
we expect to find the similarity of different nodes. For example,
since the From label is structurally close to the From input field,
and also the text in the label (From) is similar to the aria-label
of the input From as illustrated in Listing 1, we expect these two
elements to fall close to each other in the embedding space. We can
then use similarity metrics such as cosine similarity to measure the
closeness of the nodes.

3.1.2 Local Textual Context. The first type of context that we
aim to clarify is the local textual context. This context commonly
consists of any piece of text that might provide clarifications for
the input field, such as labels, hint texts, or any relevant feedback
for the input field. These relationships are key to deciphering the
nature of an input field.

We can observe in Figure 1 that textual elements that are re-
lated to each input field are positioned close to their related input
field. For instance, the From input field is closely flanked by two
related elements: its corresponding label From and the feedback
text (Please select a valid point of origin for this

trip), both sharing visual boundaries with the input field. This
phenomenon is typically true in forms since proximity also aids
human operators in associating the textual information with the
input field. So in this phase of our methodology, we start connecting
the elements that share visual boundaries.

We iterate over input fields and compute the cosine similari-
ties with their adjacent textual elements. These calculations are
integrated into a graph 𝐺 = (𝑉 , 𝐸,𝑊), where 𝑉 represents the
graph’s nodes, encompassing the non-container nodes in the form.
𝐸 denotes the edges connecting visually adjacent elements, and𝑊
signifies the weight of these edges. The weight is determined by the
cosine similarity between the embedding vectors of the elements,
which quantifies the extent of contextual dependency between two
connected elements. A sample of the formed graph can be seen in
Figure 3.

e1

0.74

e20.83

0.43

e4

0.78
0.72

Feedback
0.69

e3 0.58

To's input

From's input

e5

To's label

From's label

Figure 3: Relating the local textual context

It is worth noting that being neighbors does not always translate
to being related. In Figure 1, the feedback text also borders the To
input field, yet it holds no relevance to it. Therefore, the formation
of the initial graph is followed by a pruning process. In this context,
we categorize entities within the form into two types: main and aux-
iliary. Input fields are treated as main entities or first-class citizens
in form contexts; they are capable of existing without any other
elements, such as labels, with their function potentially indicated
via attributes such as placeholder or value. Conversely, auxil-
iary elements, such as labels or hint texts, inherently depend on the
existence of an input field for their relevance. A form composed
exclusively of labels or hint texts would lack functional meaning
without connection to input fields.

This conceptual framework informs our edge pruning strategy
within the graph 𝐺 . We begin by examining the auxiliary (non-
input) nodes in the graph. For each of these nodes, we inspect the
edges connected to it. If an auxiliary node is linked to multiple input
fields, we retain only the edge with the highest cosine similarity
score. For instance, in Figure 3, From’s label and feedback are
connected to both From and To input fields. However, since the
similarity score of their connection is stronger with From’s input
field, we only keep those edges.

As for text-to-text edges, we apply a statistical method for their
retention. We compile the scores of all such edges and filter out
those less than the threshold of 𝜇 + 𝜆.𝜎 , where 𝜇 represents the
mean score, 𝜎 the standard deviation, and 𝜆 is a predetermined
factor set at 1

2 . Again, in Figure 3, the feedback is connected to both
From and To labels, although the connection to label To is not
statistically significant for us to keep in the graph. After applying
the filtering process, edges removed from the graph are indicated
in red in Figure 3, while the remaining edges are shown in green.

3.1.3 Relevant Input Context. Having established the textual
context for each input field, the subsequent phase of our method
identifies relevant inputs that are interrelated. Figure 1 demon-
strates that input fields with relationships, such as From and To or
Departure and Arrival, not only share a similar textual context
but also are often in close structural proximity. This design is intu-
itive for human interpretation. The relationship between elements
is typically indicated by semantically related labels and their spatial

Bridging Semantics for Automated Web Form Testing , ,

Figure 4: Constraint prompt structure

closeness, as the significant distance between elements generally
diminishes their perceived relevance.

In light of this observation, we utilize the embeddings previously
computed to gauge the degree of connectedness between groups of
input fields. Employing the same embedding is advantageous for
this task, as it encompasses both textual similarity and structural
proximity. We define the relationship score between two input
fields (InputFieldSim) as the maximum of the input-to-input and
label-to-label similarity scores as follows:

𝐼𝑛𝑝𝑢𝑡𝐹𝑖𝑒𝑙𝑑𝑆𝑖𝑚 = max{𝑠𝑖𝑚(𝑙𝑎𝑏𝑒𝑙1, 𝑙𝑎𝑏𝑒𝑙2), 𝑠𝑖𝑚(𝑖𝑛𝑝𝑢𝑡1, 𝑖𝑛𝑝𝑢𝑡2)}

In instances where input fields lack associated labels, we adapt the
methodology by omitting the label terms from the calculation.

It is important to recognize that the relationships discerned
between input groups are not inherently obligatory; lower score
relations do not necessarily imply a meaningful connection. To
effectively identify and exclude less relevant relationships, we em-
ploy the same statistical approach previously applied to text-to-text
edges, as outlined in subsubsection 3.1.2.

3.2 Constraint Generation and Validation

Our objective now is to use the information in FERG to infer a
series of constraints that align with the attributes and relationships
of the input fields within the form. In an iterative process, we
query the previously constructed FERG to extract relevant elements
for each input field. We construct prompts based on the retrieved
information and subsequently prompt the LLM for constraint and
value generation.

3.2.1 Initial Generation Phase. Following the connection of in-
put fields to their corresponding elements within the form, we can
make educated guesses regarding the specific constraints associated
with each field. For instance, at this stage, we possess knowledge of
the type requirement imposed upon the From input field, derived
from its underlying HTML code (Listing 1), we have inferred the
surrounding textual context including its associated label, and we
have established a relationship between the From and To input
fields. Leveraging this information, humans are capable of infer-
ring a significant number of constraints (e.g., the field should be
alphabetical, not equal to the To field, etc.). If the specific appli-
cation context for which the form is intended is known, we can

infer virtually all of the constraints for the From field, as outlined
in section 2.

Leveraging the vast datasets on which LLMs are trained, we an-
ticipate their ability to perform similar inferential tasks as humans.
Therefore, following the construction of FERG, our subsequent
step involves utilizing the relationships and information it encodes
to infer an initial set of constraints for the form’s input fields. To
achieve this, we employ an LLM, tasked with selecting a series
of constraints from a pre-defined list of constraint templates, as
outlined in Table 1.

Table 1: Constraint Templates

Signature Definition

toBeEqual(value) The input field value is exactly
equal to the given value.

toHaveLengthCondition(The length of the input field value
condition, value) matches the given condition.

toBeAlphabetical() The input field should be
alphabetical.

toContainWhiteSpace() The input field should contain
whitespace.

... ...

While the generated constraints derived from these templates
are readily evaluable functions, it is crucial to acknowledge that
certain inherent complexities within web applications cannot be
effectively captured using such functions. A pertinent illustration
can be observed in the Air Canada form depicted in Figure 1, where
the user encounters the following error message:

“It is not possible to search for flights which have both
an origin and a destination in the United States.”

In recognition of this limitation and to accurately represent such
intricate logical constraints prevalent in forms, we have introduced
a novel constraint type, termed freeTextConstraint. This
type specifically caters to the capture and articulation of scenarios
that transcend the capabilities of conventional constraint types.

Our approach to prompting the LLM begins by focusing on
each input field. We employ a structured prompt, the details of
which are outlined in Figure 4. This prompt includes the following
information:
(1) Time Context: This detail facilitates constraint generation

for date fields by enabling the LLM to compare them with the
current date.

(2) Form Context: To provide general context about the form,
we incorporate its title, description, and labels from the form’s
metadata. This information informs the LLM about the type and
purpose of the application, thereby facilitating more accurate
and relevant constraint generation.

(3) Input Field and Local Context: We provide the HTML of
the target input field as context for the LLM. Additionally, we
include local textual context extracted from FERG (subsubsec-
tion 3.1.2 to hint at the input field’s intended purpose within
the form structure.

(4) Global Context:We consider elements that have a global asso-
ciation with the input field (subsubsection 3.1.3) and incorporate
them into the prompt. These inferred relationships assist the

, , Parsa Alian, Noor Nashid, Mobina Shahbandeh, and Ali Mesbah

Figure 5: Value prompt structure

LLM in understanding the inter-variable constraints of the input
field.

For each input field, the LLM is provided with these pieces of
information, and it is asked to select a set of constraints from con-
straint templates in Table 1. Given the extensive training of the
LLM on a diverse data corpus, we anticipate its ability to grasp
the semantics embedded in each input field, and leverage form
and FERG’s contextual information as guidance. As a result, we
expect the LLM to generate a set of constraints closely mirroring
the real-world constraints associated with these fields. An example
of the LLM’s response is demonstrated in Listing 2, showcasing the
constraints generated for the From field in the Air Canada form
depicted in Figure 1.

1 expect(field('From'))
2 .toBeTruthy()
3 .toBeAlphabetical()
4 .toHaveLengthCondition('>', 2)
5 .not.toBeEqual('To')

Listing 2: From field’s generated constraints

The presented example illustrates the generation of specific con-
straints (lines 2-4), which are literal, and extrapolated from localized
data such as labels. This field is expected to satisfy several condi-
tions, namely, it should (1) not be empty (line 2), (2) adhere to
a specified minimum length (line 3), and (3) contain exclusively
alphabetical characters (line 4). Additionally, certain constraints
(line 5) depend on values drawn from different fields; for instance,
(4) the From and To fields are expected to be distinct. These four
constraints concisely mirror the anticipated requirements for the
values of the To field.

The constraints generated by the LLM form a crucial basis for
approximating the underlying logic inherent to the input fields,
thereby facilitating the generation of appropriate values for the
form. This process of value generation is executed by directing the
LLM to produce values that comply with the deduced constraints.
The specific structure of the prompt used for guiding the LLM in
value generation is detailed in Figure 5. This prompt includes:

(1) Form Context, Input Field, and Local Context: These sec-
tions are identical to the constraint prompt, and are included
for the LLM to grasp the overall context of the form. The Time
Context is omitted, as we expect the date and time requirements
to reflect in the generated constraints.

(2) Constraints and Values: These are the generated constraints
resulting from prompting LLM previously. Since we generate

values one by one, we include the generated values for rele-
vant fields in the constraints. As an example, while generating
value for From field, we mention input field should
not be equal to ’Toronto’, following the constraint
on line 5 of Listing 2.

With the contextual information in this prompt, the LLM can
effectively generate a variety of values that may meet the require-
ments of the form.

3.2.2 Feedback Loop and Constraint Updating. Upon com-
pletion of the previous step, we obtain a series of constraints and
values based on the context of the form. However, at this point, we
have not interacted with the form yet, and the adequacy of these
values for the form is still undetermined. Therefore, the next step is
to populate the form with these generated values and subsequently
submit it, thereby triggering a response or feedback from the form.

After the submission of the form, several scenarios can unfold.
The user might either remain on the initial page or be redirected to a
new page. In each of these scenarios, textual indicators may appear,
signaling either the success or failure of the form submission. In
general, we can define the success or failure of the submission as
follows:

Definition 3. A Failure in submission is identified by the reception
of error feedback from the web application. In contrast, a Successful
submission is denoted by the absence of such failure feedback and
the transition to the intended outcome of the form.

For instance, in the case of Air Canada’s flight reservation form, a
successful submission would navigate to a page displaying available
flight options, while a failed submission would typically generate
error messages.

Given the complexity inherent in identifying the state of the
page post-submission, we employ a heuristic-based approach to
discern the form’s status. This involves calculating the differential
(diff) of the DOM tree before and after the form’s submission. Sub-
sequently, we refine these differences by filtering them through
specific keywords commonly associated with feedback messages,
such asnot valid,required,denied, and similar terms. The
elements that emerge after this filtration process are then regarded
as the feedback resulting from the form submission. It is impor-
tant to underscore that this method can be effective in identifying
feedback irrespective of whether the submission leads to a page
redirection or remains on the same page since it searches for the
failure keywords on the page.

After submission, the FERG creation algorithm can be redeployed
to update the FERG. Using this algorithm, we can connect the inline
feedback that is in the form to their respective input field, using the
local textual context connection described in subsubsection 3.1.2.
However, there might be some pieces of feedback text that the
algorithm is not able to connect to input fields, because it is not
in the proximity of an input field, or because of the page redirect,
which results in the form not being available. In both of these
cases, we are dealing with global feedback, which is feedback that
is applied to multiple fields or all of the input fields in the form. For
instance, the error present at the top of Figure 1 (flight being in the
United States), is not attached to any specific input.

Bridging Semantics for Automated Web Form Testing , ,

To refine the constraints and ensure their accurate represen-
tation of the form’s requirements, we initiate another prompting
process with the LLM, as delineated in Figure 4. This process in-
volves generating a new set of constraints, considering the feedback
received from the previously submitted values. The feedback part
can be viewed at the end of the constraint prompt in Figure 4. In
this iteration, the previously submitted values and post-submission
feedback are incorporated into the prompt, allowing the model to
align its responses more closely with the received feedback. This
includes integrating inline feedback for each element, and in in-
stances of global feedback, incorporating it into the prompts for all
elements.

This refined approach enables the LLM to adjust and fine-tune
the constraints in response to the provided feedback, thereby facili-
tating the generation of new values that comply with these updated
constraints. The form is subsequently resubmitted with these new
values, and this iterative cycle is repeated until a successful form
submission is achieved. At this juncture, the algorithm concludes
its operation. Successfully reaching this stage allows us to assert
with considerable confidence that the derived constraints accurately
mirror the actual requirements stipulated by the form.

3.2.3 Constraint Validation. After finishing the previous step,
we are left with a set of constraints that can pass the form. While
these constraints may have facilitated successful form submissions,
they could be unnecessarily restrictive. Take, for instance, the con-
straints in Listing 3, particularly toHaveLengthCondition(‘>’,
2). This appears to be a reasonable constraint for the field, however,
the developers might not have applied any length restrictions to
this particular field. Even though any values with lengths exceeding
2 will pass the form validation, this constraint might not accurately
reflect the intended logic for the form.

To validate these constraints, we leverage an iterative process
where we analyze the deduced constraints for each field. During
each iteration, we negate one constraint at a time while preserv-
ing all other constraints and generating corresponding values for
evaluation to make sure that the constraint is a valid one for the
input field. For instance, considering the To field and the length con-
straint, the corresponding validation constraint would be .not.to-
HaveLengthCondition(‘>’, 2).

1 expect(field('bkmgFlights_origin_trip_1'))
2 .not.toHaveLengthCondition('>', 2)

Listing 3: Air Canada’s To Field Constraint Negation

We employ these revised constraints to generate a value for the
field and proceed to submit the form. The form submission can
yield two potential outcomes:

• Success: This indicates that the initial constraint was ineffective
and not considered by the developers. Nonetheless, as this con-
straint was derived from the semantic interpretation of the input
field and was expected to hold, we recorded this discrepancy in
a database. This acts as a notification to the developers about
the discrepancy between our expectations based on semantic
interpretation and the actual logic of the input field. Therefore,
we keep this attempt as a test in the test generation phase.

• Failure: A feedback indicating a failure validates that the ini-
tial constraint was correctly inferred since its negation causes

failure. We preserve the values used in the form along with the
feedback (both inline and global) for generating assertions in the
subsequent test generation phase.

After iterating through these steps for every input field and
each associated constraint, we accumulate a database comprising
discrepancies, submission success, and submission errors.

3.3 Test Generation

The overarching objective of our test generation is to cover a com-
prehensive range of form submission states, inclusive of both suc-
cessful and failed form submissions. Each test case examines a
submission state of the form-under-test (See Definition 1).

Throughout the prior stages, we have generated and validated
anticipated constraints for each input field. We expect these con-
straints to correspond to a potential execution path within the
form’s functionality. By submitting values that either adhere to or
violate each constraint, we are effectively verifying the presence
of the associated execution paths within the form’s logic. Simul-
taneously, we systematically record the input values used and the
resulting outcomes of each form submission in a database for future
reference and analysis.

According to this scheme, each set of values and submission
outcome that we encountered in the previous phases can be trans-
formed into a test case. These tests essentially function as end-
to-end tests for the form under examination, ensuring its correct
operation under varying input conditions. From the local relation
edges, we obtain single-variable test cases, and we generate test
cases for the combination of different input fields using the relations
that we inferred during global relation creation. Each generated
test case performs the following actions: (1) navigate to the page
containing the form, (2) populate the form fields with the inferred
values, (3) submit the form, and (4) assert that the submission state
expected is present on the page.

3.4 Implementation

FormNexus is developed in Python and supports the integration
of either the GPT-4 [37] or the Llama 2 [45] model. We opted
for GPT-4 due to its established performance as one of the most
advanced LLMs available, while Llama 2 was chosen for its demon-
strated capabilities as a top-performing open-source LLM across
various benchmarks. For textual embedding generation, we uti-
lized the ADA architecture [35], and a standard implementation
of node2vec [19] to capture the underlying graph structure. The
definition of our constraint templates drew inspiration from the Jest
library [4], a testing framework equipped with a comprehensive set
of built-in assertions for evaluating variables under diverse condi-
tions. By adapting these assertions to our specific requirements, we
arrived at a final set of 14 constraint types. Notably, the test cases
generated by FormNexus leverage the Selenium framework [5] for
robust execution.

4 EVALUATION

We have framed the following research questions to measure the
effectiveness of FormNexus:

• RQ1: How effective is FormNexus in generating tests for forms?

, , Parsa Alian, Noor Nashid, Mobina Shahbandeh, and Ali Mesbah

Table 2: Dataset Categories

Category Form Count Input Count

Travel 8 31
Query 13 17

Registration 4 24
Data Entry 5 30

Total 30 102

• RQ2: How does FormNexus compare to other techniques?
• RQ3: What is the contribution of FormNexus’s components
towards the end results?

For running our experiments, we set the temperature parameter
of the LLMs to 0 to produce the same response every time.

4.1 Dataset

Given that there exists no dataset that contains information about
form values and the associated submission states, we curated and an-
notated a list of web forms. Drawing from theMind2Web dataset [16],
which comprises a wide array of popular websites in the US across
various domains, we aimed to construct a diverse dataset. Addition-
ally, to address tasks that are infeasible in real-world applications
using automated tools, such as user creation, we integrated open-
source applications into our dataset. Our selection criteria for forms
included: (1) representation across a range of web application do-
mains; (2) diversity in form types and categories; (3) presence of
input value validation, crucial for evaluating baselines and our
technique’s efficacy in exploring these validation scenarios; and (4)
forms that do not require user authentication, making them more
accessible for real-world application analysis.

Our emphasis was primarily on free-form input fields such as
text, number, or date inputs, necessitating value generation, rather
than selection-based inputs, i.e., checkboxes or dropdowns.

Table 2 presents the range of subjects covered in our study, along
with the respective counts of forms and input fields in each cate-
gory. Our methodology was assessed on a total of 30 web forms,
spanning 4 distinct categories of functionality. These forms incor-
porate a cumulative total of 102 input fields, with individual forms
containing between 1 to 14 inputs, averaging at 3.4 inputs per form.
Each form implements some level of validation, varying in complex-
ity, thereby contributing to the diversity of our test dataset. Out of
30, 6 of the forms were from open-source applications containing 37
of the input fields, while the rest were from real-world applications.

Ground Truth. To evaluate the effectiveness of FormNexus in
testing forms, we evaluate the number of Form Submission States
(FSS) (Definition 1) it can cover; this includes covering both suc-
cessful and unsuccessful states of form submission (Definition 3).
To this end, we need a ground truth for the number of states that
a form can have after submission. Finding this number can be a
difficult task, with or without having access to the source code of
the application. To create a ground truth, the authors tried various
inputs for the subjects, capturing both the input values and the
corresponding form feedback as essential data points in our dataset.
This process involved the following steps:

(1) Initiating with Passing Values: Each author begins by ex-
ploring an initial set of passing values, ensuring the submission
is successful.

(2) Incremental Input Variations: Each author systematically
modifies one input value at a time while keeping the other
inputs fixed. This approach allows us to explore different sce-
narios and gather various feedback (i.e., FSSs) from the form
for each specific input variation. After finishing single variable
modifications, we also check modifying possible meaningful
combinations of inputs to discover more FSSs.

(3) Aggregation: After each author independently finishes the
discovery process, we aggregate the discovered states. Discrep-
ancies are discussed and resolved in this step as well.

Following this methodical approach, we comprehensively cover
a wide range of input combinations, obtaining valuable insights
into how the forms respond to various user inputs.

4.2 Baselines

As previously stated, the field of generating test cases for web forms
is sparsely explored. We considered employing Santiago et al. [39]
as a baseline for our comparison. However, it was excluded from our
comparison due to the unavailability of their replication package
and the absence of a detailed description of their approach.

To assess our method’s efficacy, we compared it with various
alternative strategies. Our first approach involves a static module
that tests pre-defined values, chosen to identify potential errors
based on the input field’s type attribute. For example, in numeric
fields, this module inputs extremes like very large or small num-
bers, including zero. Additionally, we utilize Crawljax [33], a web
crawler equipped with a random value generation for form inputs,
to generate 20 values for each input field in our subjects. We use
these values to test the forms.

An alternative approach for test case generation is directly em-
ploying the LLM. In this approach, we designed modules to prompt
GPT-4 and Llama 2 with the forms’ HTML, directing these models
to generate both successful and erroneous test inputs for each form.
This approach bypasses the additional techniques incorporated in
FormNexus.

We also adopt a method akin to QTypist [32] for generating
a variety of test values. A direct application of QTypist was not
feasible as it was not intended for testing, and the model used,
the Curie version of GPT-3 [13], is no longer available for fine-
tuning. Additionally, the specific dataset used for fine-tuning was
not disclosed in their repository. Therefore, we utilized GPT-4 [37],
applying linguistic patterns similar to those described in QTypist,
and instructed the model to generate both passing and failing values
for the form. This can give QTypist an advantage since GPT-4 is
likely more powerful than their fine-tuned model.1

4.3 RQ1: Effectiveness

Our primary objective is to cover as many states behind forms as
possible. Thus, we measure effectiveness as a percentage of covered
FSSs.

1We also considered Auto-GPT [2], but it was unable to generate form input values.

Bridging Semantics for Automated Web Form Testing , ,

Figure 6: Box plots of FSS Coverage

Figure 6 illustrates the distribution of FSS coverage for differ-
ent methods. Tests generated by FormNexus-GPT-4 and Form-
Nexus-Llama 2 successfully cover 51% and 89% of the known FSSs
respectively.

FormNexus-GPT-4 was, in most cases, effective in inferring an
accurate model of the constraints on the first attempt. On average,
the method reached stable constraints within 1.13 iterations. In 4

out of 30 cases was a second iteration necessary to derive a more
accurate list of constraints. No instances required more than two
iterations to achieve a stable constraint list.

On average, FormNexus-GPT-4 produced 3.77 constraints per
input field. In the constraint validation phase, approximately 26% of
these constraints were invalidated on average, showing that these
invalidated constraints were not factored into the application’s
design by the developers. In total, FormNexus-GPT-4 generated
389 constraints, which averages around 13.0 constraints for each
form. FormNexus-Llama 2 produced 13.11 constraints per input
field, 45.3 per each form, with a total of 1359 constraints, where
on average around 76% of the constraints were invalidated.

4.4 RQ2: Comparison

The data presented in Figure 6 demonstrate that FormNexus-GPT-
4, achieves an average coverage rate of 89%, which significantly
surpasses the results achieved by the baselines; The static method
attained a 57% coverage rate, while Crawljax only attained a 30%
coverage rate. The standalone Llama 2 and GPT-4models managed
a coverage rate of 35% and 71%, respectively. FormNexus-Llama
2 can improve its accuracy to 51%. Therefore, our technique rep-
resents an 25% improvement in FSS coverage over the next best-
performing baseline, namely standalone GPT-4.

It is worth noting that there were 3 out of 30 (10%) instances
where GPT-4 could not generate any viable values for form inputs.
Two of these cases were due to the context size of the form being
exceeded, rendering the GPT-4 model unable to produce meaning-
ful outputs. In another case, the response generated by GPT-4 was
nonsensical and could not be interpreted in a useful way. Similarly,
Llama 2 was unable to produce viable responses in 14 out of 30
(46%) instances due to context size limitations. These limitations

Figure 7: Passing Rates

underscore the benefits of our approach. By constraining each LLM
prompt to focus solely on one input and supplying contextual-
ized information, FormNexus decreases the LLM’s context size.
Additionally, by structuring the constraint and value generation
process into distinct steps, we delegate fewer internal processing
tasks to the LLM, thereby reducing the likelihood of nonsensical or
unwanted outputs.

We measure the rate of successful FSSs as the form passing rate,
presented in Figure 7. FormNexus-GPT-4 was able to generate
successful entries for 83% of the forms, marking a notable 27%

improvement over GPT-4 model with a 63% passing rate. The static
method, Crawljax, and QTypist yielded 23%, 3%, and 57% passing
rates, and Llama 2 and FormNexus-Llama 2 yielded 33% and 30%
respectively. Their generated values often deviated from the forms’
specific requirements, limiting their success to only forms with
simple validation rules.

4.5 RQ3: Ablation Study

Our approach is comprised of multiple sub-modules, each of which
contributes to the final results. In addressing RQ3, our objective
is to elucidate the individual contributions of these components.
Specifically, for each part of the ablation, we remove one specific
module while keeping everything else the same. We utilize the
FormNexus-GPT-4 given its superior performance shown in the
previous sections. The ablation study is conducted across all ap-
plications listed in our dataset, and the averages are presented in
Table 3.

Effectiveness of FERG in Test Generation. By excluding the
local textual context and relevant input context from the constraint
and value generation prompts, we can quantify the extent to which
FERG’s information enhances the test generation results. Table 3
indicates that employing FERG and appending pertinent informa-
tion to the prompt can bolster the state coverage from 82% to 89%,
equating to a 9% improvement. Furthermore, the passing rate of
the method increased from 70% to 83% by adding the FERG to the
prompt. Even without employing FERG, FormNexus-GPT-4 still
significantly outperforms (82%) the standalone GPT-4 model (71%).

, , Parsa Alian, Noor Nashid, Mobina Shahbandeh, and Ali Mesbah

Table 3: Ablation Results of FormNexus-GPT-4

Variation Average FSS Coverage Total Passing Rate

No FERG 82% 70%
No Date 83% 70%

No Feedback 87% 73%
No Form Context 88% 83%
FormNexus-GPT-4 89% 83%

This superior performance can be primarily attributed to Form-
Nexus’s structured workflow. By supplying the LLM with a set
of constraints, we guide it toward identifying a broader range of
potential validations on the input fields. Consequently, the LLM
becomes capable of generating values that it would not have been
able to produce without this additional guidance.
Inclusion of Date. A significant number of forms feature date-
related fields, many of which contain validations to ensure the
provided date falls within an appropriate time. Therefore, including
the current date in the prompt, as detailed in subsection 3.2, can
assist with generating test cases for these forms. As demonstrated
in Table 3, incorporating the date into the prompt can increase
the method’s coverage from 83% to 89%. However, this increase is
constrained by the fact that some web forms either lack date-related
validation or date-related input fields. The average improvement
for forms with date fields is around 20%, compared with the 7%
overall improvement. Moreover, the inclusion of date increased the
passing rate from 70% to 83%.
Effects of Feedback. As indicated in Table 3, the improvement
with a feedback loop is less significant than the two previous varia-
tions since the LLM infers the correct constraints of the input fields
mostly during the first iteration. Nevertheless, in the cases that
required more than one iteration, we noted an average of 2% im-
provement in the covered FSSs. Overall, the inclusion of a feedback
loop is justified, as there may be numerous real-world scenarios
where the LLM is unable to accurately infer the constraints on the
first attempt. By incorporating feedback into the prompt, we were
able to cover successful submissions more and it contributed to
increasing the passing rate from 73%.
Effects of Form Context. According to data in Table 3, form
context (see Figure 5) provides a slight advantage in FFS coverage
but no effect on the passing rate. This ismainly because the semantic
constraints of most of the input fields are reflected in the FERG and
can be inferred independently from the form context.

5 DISCUSSION

Variations in FormNexus Effectiveness. The improvement in
FSS coverage achieved by FormNexus compared to baseline results
varies significantly across different categories of web forms. For
example, query web forms, which typically lack the complex vali-
dations found in travel forms, usually consist of a single free-form
text input and seldom give failure feedback. Consequently, we ob-
served notable improvements in FSS coverage with FormNexus
in various categories. For instance, in the context of travel forms,
FormNexus-GPT-4 achieved an FSS rate of 82%, a considerable
enhancement over the 42% with GPT-4 and 36% using QTypist.
In contrast, for query forms, the FSS coverage rates are 92% for

FormNexus-GPT-4, 91% for GPT-4, and 90% for QTypist. These
findings indicate that FormNexus is more effective in enhancing
coverage rates in complex scenarios.
Threats to Validity.One external threat to the validity of our work
is the representativeness of our experimental subject selection. To
mitigate this threat, we chose subjects from diverse categories of
web applications and included diverse web forms.

The validity of our work may also be threatened by the popu-
lated ground truth dataset. Given the inherent difficulties in fully
understanding the underlying logic of real-world web applications,
the numbers we have measured might not perfectly represent the
actual logic of the form. To address this issue, multiple authors
independently tested the web forms and consolidated their results,
aiming to minimize the possibility of missing any form submission
states. However, it should be noted that regardless of the actual
total number of submission states, our method has consistently
demonstrated a significant improvement in discovering submission
states over the baselines.

6 RELATEDWORK

Automated Form Filling. Research in automated form filling
has progressed from heuristic-based methods [7, 10, 42, 43, 47] to
machine learning techniques [11, 44], addressing challenges in web
crawling [38] and automatic completion of web forms [23, 24, 26,
27, 36, 51]. Specialized strategies focus on mobile form-filling [8, 20,
30, 46], with LLMs like GPT-3 aiding in input generation [13, 32].
However, these do not encompass form-testing like FormNexus,
which also integrates FERG and GPT-4 for semantic comprehension
of web forms.

Sparse literature on test generation for web forms includes San-
tiago et al.’s machine learning approach for extracting web form
semantics [39], but it lacks the flexibility and real-world application
of FormNexus. Form understanding is further explored in projects
like OPAL [18] and studies like Zhang et al. [50], focusing on clas-
sifying input fields using various features. However, they fall short
in identifying interrelationships between form elements, which is
vital for capturing form complexities.
LLMs. LLMs have been pivotal in various web-related tasks such
as HTML understanding [22], information extraction [31], and web
page summarization [15]. Language models specific to HTML like
HTLM [6], Webformer [21], DOM-LM [17], and MarkupLM [29]
have been developed. Their integration into software testing has
been innovative [25, 28, 34, 40, 41, 48]. Mind2Web introduces a
dataset with real-world web applications using LLMs, but its under-
standing of form semantics is limited [16]. In contrast, FormNexus
leverages FERG to enrich web form semantics, enhancing form
filling effectiveness.

7 CONCLUSION

Web form testing has been an under-explored area of research, de-
spite its considerable potential utility for developers. In this paper,
we introduced FormNexus, a novel technique for automatically gen-
erating test cases for web forms. Our approach leverages a unique
technique to discern the context of input fields within forms by
creating a graph called FERG. We leverage these contexts within a
workflow to generate constraints for input fields, and subsequently,

Bridging Semantics for Automated Web Form Testing , ,

to generate test cases based on these constraints using LLMs. We
demonstrate that FormNexus achieves an impressive 89% submis-
sion state coverage and an 83% form passing rate, outperforming
other techniques by a minimum of 25% in coverage and 27% in
passing rate.

For future work, we plan to expand our dataset and improve our
work to accommodate multi-step web forms. Additionally, we plan
to investigate different Graph Neural Network-based architectures
for generating embeddings, with a goal to further enhance the
effectiveness of FERG in identifying semantic relationships.

8 DATA AVAILABILITY

The implementation of our technique, FormNexus, has been made
publicly accessible [3]. This includes a comprehensive codebase,
scripts, and a detailed collection of constraint templates and system
prompts used for LLMs. Furthermore, the repository offers exten-
sive documentation on the applications and web forms utilized in
our evaluations, along with the ground truth dataset.

REFERENCES

[1] 2023. Air Canada. https://www.aircanada.com/ca/en/aco/home.html. Accessed:
2023-07-01.

[2] 2023. Auto-GPT. https://github.com/Significant-Gravitas/Auto-GPT/.
[3] 2023. Form Nexus. https://anonymous.4open.science/r/webform-testing-56BB/

README.md.
[4] 2023. Jest. https://jestjs.io/docs/expect.
[5] 2023. Selenium. https://www.selenium.dev. Accessed: 2023-07-01.
[6] Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi

Ghosh, and Luke Zettlemoyer. 2022. HTLM: Hyper-Text Pre-Training and Prompt-
ing of Language Models. In International Conference on Learning Representations.

[7] Nadia Alshahwan and Mark Harman. 2011. Automated web application testing
using search based software engineering. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). 3–12.

[8] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. Associ-
ation for Computing Machinery, Article 59, 11 pages.

[9] Ellen Arteca, Sebastian Harner, Michael Pradel, and Frank Tip. 2022. Nessie: Au-
tomatically Testing JavaScript APIs with Asynchronous Callbacks. In Proceedings
of the 44th International Conference on Software Engineering. ACM, 1494–1505.

[10] Luciano Barbosa and Juliana Freire. 2010. Siphoning hidden-web data through
keyword-based interfaces. Journal of Information and Data Management 1, 1
(2010), 133–133.

[11] Hichem Belgacem, Xiaochen Li, Domenico Bianculli, and Lionel Briand. 2023.
A machine learning approach for automated filling of categorical fields in data
entry forms. ACM Transactions on Software Engineering and Methodology 32, 2
(2023), 1–40.

[12] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2020.
Dependency-Aware Web Test Generation. In 2020 IEEE 13th International Confer-
ence on Software Testing, Validation and Verification (ICST). 175–185.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[14] Xiaoning Chang, Zheheng Liang, Yifei Zhang, Lei Cui, Zhenyue Long, Guoquan
Wu, Yu Gao, Wei Chen, JunWei, and Tao Huang. 2023. A Reinforcement Learning
Approach to Generating Test Cases for Web Applications. In 2023 IEEE/ACM
International Conference on Automation of Software Test (AST). 13–23.

[15] Huan-Yuan Chen and Hong Yu. 2023. Intent-Based Web Page Summarization
with Structure-Aware Chunking and Generative Language Models. In Compan-
ion Proceedings of the ACM Web Conference 2023. Association for Computing
Machinery, 310–313.

[16] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang,
Huan Sun, and Yu Su. 2023. Mind2Web: Towards a Generalist Agent for the Web.
arXiv:2306.06070

[17] Xiang Deng, Prashant Shiralkar, Colin Lockard, Binxuan Huang, and Huan Sun.
2022. DOM-LM: Learning Generalizable Representations for HTML Documents.
arXiv preprint arXiv:2201.10608 (2022).

[18] Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio Orsi, and
Christian Schallhart. 2013. The ontological key: automatically understanding and
integrating forms to access the deep Web. The VLDB Journal 22 (2013), 615–640.

[19] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’16). Association for Computing
Machinery, 855–864.

[20] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of An-
droid applications via model abstraction and refinement. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 269–280.

[21] Yu Guo, Zhengyi Ma, Jiaxin Mao, Hongjin Qian, Xinyu Zhang, Hao Jiang, Zhao
Cao, and Zhicheng Dou. 2022. Webformer: Pre-Training with Web Pages for
Information Retrieval. In Proceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. Association for
Computing Machinery, 1502–1512.

[22] Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang,
Aakanksha Chowdhery, Sharan Narang, Noah Fiedel, and Aleksandra Faust. 2022.
Understanding html with large language models. arXiv preprint arXiv:2210.03945
(2022).

[23] Inma Hernández, Carlos R Rivero, and David Ruiz. 2019. Deep Web crawling: a
survey. World Wide Web 22 (2019), 1577–1610.

[24] Lu Jiang, Zhaohui Wu, Qinghua Zheng, and Jun Liu. 2009. Learning deep web
crawling with diverse features. In 2009 IEEE/WIC/ACM International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technology, Vol. 1. IEEE, 572–575.

[25] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large Language Models Are
Few-Shot Testers: Exploring LLM-Based General Bug Reproduction. In Proceed-
ings of the 45th International Conference on Software Engineering. IEEE Press,
2312–2323.

[26] Gustavo Zanini Kantorski and Carlos Alberto Heuser. 2012. Automatic Filling of
Web Forms. In Proceedings of the 6th Alberto Mendelzon International Workshop
on Foundations of Data Management, Ouro Preto, Brazil, June 27-30, 2012 (CEUR
Workshop Proceedings, Vol. 866). CEUR-WS.org, 215–219.

[27] Juliano Palmieri Lage, Altigran S da Silva, Paulo B Golgher, and Alberto HF
Laender. 2004. Automatic generation of agents for collecting hidden web pages
for data extraction. Data & Knowledge Engineering 49, 2 (2004), 177–196.

[28] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha
Sen. 2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with
Pre-Trained Large Language Models. In Proceedings of the 45th International
Conference on Software Engineering (ICSE ’23). IEEE Press, 919–931.

[29] Junlong Li, Yiheng Xu, Lei Cui, and Furu Wei. 2022. MarkupLM: Pre-training
of Text and Markup Language for Visually Rich Document Understanding. In
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
6078–6087.

[30] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 23–
26.

[31] Zimeng Li, Bo Shao, Linjun Shou, Ming Gong, Gen Li, and Daxin Jiang. 2023.
WIERT: Web Information Extraction via Render Tree. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 37. 13166–13173.

[32] Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and
Qing Wang. 2023. Fill in the blank: Context-aware automated text input genera-
tion for mobile gui testing. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 1355–1367.

[33] Ali Mesbah, Engin Bozdag, and Arie Van Deursen. 2008. Crawling Ajax by
inferring user interface state changes. In 2008 eighth international conference on
web engineering. IEEE, 122–134.

[34] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-Based Prompt Selec-
tion for Code-Related Few-Shot Learning. In Proceedings of the 45th International
Conference on Software Engineering (ICSE ’23). IEEE Press, 2450–2462.

[35] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry
Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-training. arXiv preprint
arXiv:2201.10005 (2022).

[36] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. 2005. Downloading Tex-
tual Hidden Web Content through Keyword Queries. In Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’05). Association for
Computing Machinery, 100–109.

[37] OpenAI. 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023).
[38] Sriram Raghavan and Hector Garcia-Molina. 2001. Crawling the Hidden Web. In

Proceedings of the 27th International Conference on Very Large Data Bases. Morgan
Kaufmann Publishers Inc., 129–138.

[39] Dionny Santiago, Justin Phillips, Patrick Alt, Brian Muras, Tariq M King, and
Peter J Clarke. 2019. Machine learning and constraint solving for automated
form testing. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 217–227.

https://www.aircanada.com/ca/en/aco/home.html
https://github.com/Significant-Gravitas/Auto-GPT/
https://anonymous.4open.science/r/webform-testing-56BB/README.md
https://anonymous.4open.science/r/webform-testing-56BB/README.md
https://jestjs.io/docs/expect
https://www.selenium.dev
https://arxiv.org/abs/2306.06070

, , Parsa Alian, Noor Nashid, Mobina Shahbandeh, and Ali Mesbah

[40] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. Adaptive test
generation using a large language model. arXiv preprint arXiv:2302.06527 (2023).

[41] Mohammed Latif Siddiq, Joanna Santos, Ridwanul Hasan Tanvir, Noshin Ulfat,
FahmidAl Rifat, and Vinicius Carvalho Lopes. 2023. Exploring the Effectiveness of
Large Language Models in Generating Unit Tests. arXiv preprint arXiv:2305.00418
(2023).

[42] Moumie Soulemane, Mohammad Rafiuzzaman, and Hasan Mahmud. 2012. Crawl-
ing the hidden web: An approach to dynamic web indexing. International Journal
of Computer Applications 55, 1 (2012).

[43] Ben Spencer, Michael Benedikt, and Pierre Senellart. 2018. Form filling based on
constraint solving. In Web Engineering: 18th International Conference, ICWE 2018,
Cáceres, Spain, June 5-8, 2018, Proceedings 18. Springer, 95–113.

[44] Guilherme A Toda, Eli Cortez, Altigran S da Silva, and Edleno de Moura. 2010.
A probabilistic approach for automatically filling form-based web interfaces.
Proceedings of the VLDB Endowment 4, 3 (2010), 151–160.

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv
preprint arXiv:2307.09288 (2023).

[46] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String
Solver for Vulnerability Detection in Web Applications. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. Association
for Computing Machinery, 1232–1243.

[47] Tanapuch Wanwarang, Nataniel P Borges Jr, Leon Bettscheider, and Andreas
Zeller. 2020. Testing apps with real-world inputs. In Proceedings of the IEEE/ACM
1st International Conference on Automation of Software Test. 1–10.

[48] Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. 2023.
ChatUniTest: a ChatGPT-based automated unit test generation tool. arXiv preprint
arXiv:2305.04764 (2023).

[49] Rahul Krishna Yandrapally and Ali Mesbah. 2023. Fragment-Based Test Gen-
eration for Web Apps. IEEE Transactions on Software Engineering 49, 3 (2023),
1086–1101.

[50] Shaokun Zhang, Yuanchun Li, Weixiang Yan, Yao Guo, and Xiangqun Chen.
2021. Dependency-aware Form Understanding. In 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 139–149.

[51] Qinghua Zheng, Zhaohui Wu, Xiaocheng Cheng, Lu Jiang, and Jun Liu. 2013.
Learning to crawl deep web. Information Systems 38, 6 (2013), 801–819.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Input Context Construction
	3.2 Constraint Generation and Validation
	3.3 Test Generation
	3.4 Implementation

	4 Evaluation
	4.1 Dataset
	4.2 Baselines
	4.3 RQ1: Effectiveness
	4.4 RQ2: Comparison
	4.5 RQ3: Ablation Study

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Data Availability
	References

